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 964 MAXWELL ROSENLICHT [November

 built up by using that variable and constants, together with repeated algebraic

 operations and the taking of exponentials and logarithms. Since we lose no generality

 by doing so, we shall take all exponentials and logarithms to the base e. We allow

 ourselves the convenience of the use of complex numbers, for with these the various

 trigonometric and inverse trigonometric functions turn out to be elementary, as

 seems reasonable. Thus the integral of a rational function of one real variable is

 elementary, since it is a linear combination of logarithms, inverse tangents, and

 rational functions. But we are still deficient in precision, because of the multi-

 valuedness of algebraic functions and logarithms. The functions we work with must

 be specific objects, each susceptible of an unambiguous sense. We choose to avoid

 the difficulties associated with multivaluedness by the simplest method, that of

 restricting ourselves, in any given discussion, to functions on some specific region

 (that is, nonempty connected open subset) of the real numbers lR or the complex
 numbers C, and furthermore considering only meromorphic functions on the region
 in question, a meromorphic function on a region being a function whose values are
 complex numbers or the symbol oc, with the property that sufficiently near any

 point zo of the region the function is given by a convergent Laurent series in z -zo,
 that is, a convergent power series in z - zo, with the possible addition of a finite
 number of negative powers. Thus the rational functions of one variable, which form

 the field C(z) got by adjoining the identity function z to the field of constant functions
 C, are all meromorphic on all of RF or C. The exponential of a function f meromor-
 phic on a certain region of R1 or C is a function meromorphic on the subregion

 obtained by deleting those points where the value of f is oo (and then taking
 a connected component, if we are working in R1), while log f can be taken to
 be meromorphic on any simply connected subregion where f takes on neither of
 the values 0 or oo, by arbitrarily choosing one of its many values at any particular

 point of the subregion. Furthermore, the implicit function theorem shows that
 if we are given a polynomial equation with coefficients which are functions

 meromorphic on a certain region, the leading coefficient not being zero, then there
 exists a meromorphic solution on a suitable subregion. Thus any complicated ex-
 pression for an elementary function, compounded of algebraic operations, ex-
 ponentials and logarithms, has a realization as a meromorphic function on some
 region. Now the totality of all meromorphic functions on a given region form a
 field under the usual operations of functional addition and multiplication, and the
 restriction of all these functions to any given subregion gives an embedding of
 fields. The derivative of a function meromorphic on a given region is again mero-

 morphic, as is an indefinite integral, if one exists, of the function. Note that the
 rational functions on a region, that is the restriction of 0(z) to this region, are a

 field of meromorphic functions on the region that are closed under differentiation,
 and that if we have any field of meromorphic functions on a region that is closed
 under differentiation and get a larger field of meromorphic functions on the region by
 adjoining the exponential or a logarithm of a function in our field, or a solution
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 1972] INTEGRATION IN FINITE TERMS 965

 of a polynomial equation with coefficients in the field, we again get a field of mero-

 morphic functions on the region that is closed under differentiation. Thus the proper

 objects of study are seen to be fields of meromorphic functions on given regions

 in DR or C which are closed under differentiation. If a function in such a field has an

 indefinite integral that is expressible "in finite terms," then by restricting all func-

 tions, if necessary, to a suitable subregion, we see that we have a tower of such fields

 of meromorphic functions, each larger field being obtained by adjunction of an

 exponential, or a logarithm, or the solution of an algebraic equation, the tower

 starting with the original field and culminating in a field containing the indefinite

 integral. Thus the original loosely worded analytic problem, when formulated as

 a precise analytic problem, becomes algebraic.

 2. Define a differential field to be a field F, together with a derivation on F,

 that is, a map of F into itself, usually denoted a i-* a', such that (a + b)' = a' + b'

 and (ab)' = a'b + ab' for all a, b e F. Immediate consequences are that

 (a/b)' = (ab'-a'b)/b2 if a, beF, b # 0, and (a")' = nanla' for all integers 11.
 Furthermore, 1' = (12)' = 2 1 1', so 1' = 0. Therefore the constants of F,

 that is, all c E F such that c' = 0, are a subfield of F.

 If a, b are elements of the differential field F, a being nonzero, let us agree to

 call a an exponential of b, or b a logarithm of a, if b' = a'/a; this terminology is not

 unreasonable for our present purposes since the only properties of exponentials
 and logarithms in which we are interested are their differential properties. We im-

 mediately get the "logarithmic derivative identity,"

 (av1 ..aVn)f
 (a;v1) - -al + ... + VI ? ,

 a1 .. aj a, a.1

 for a,, an nonzero elements of F and v1, V,*1 integers.

 3. There is a standard result on algebraic extensions of differential fields which

 we shall need later. For completeness we prove it here. The result is that if F is a

 differential field of characteristic zero and K an algebraic extension field of F, then

 the derivation on F can be extended to a derivation on K, and this extension is

 unique. (Thus K has a unique differential field structure extending that of F. We

 remark that the restriction to characteristic zero is not essential; it suffices to assuma

 that K is separable over F, and the following proof will hold in this more general
 case.) For the reader who is interested only in the classical function-theoretic case,

 where the fields in question are fields of meromorphic functions on a region of DR
 or C, the proof is immediate, the existence proof being a direct consequence of the

 implicit function theorem, uniqueness following from the ordinary method of

 computing derivatives of functions given implicitly. To prove the result generally,

 let X be an indeterminate and define the maps Do, D1 of the polynomial ring F[X]
 into itself by
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 966 MAXWELL ROSENLICHT [November

 n n nI n

 Do E aIX' = ai'X', DI E aiX' = iaiX'-
 i=O i=O i=0 i=O

 for ao, al, , an E F. If K has a differential field structure extending that of F, then
 for any x E K and any A(X) E F[X] we have

 (A(x))' = (DoA)(x) + (D1A)(x) * x'.

 If we replace A(X) by the minimal polynomial f(X) of x over F, (that is, the monic

 irreducible polynomial of which x is a root, indeed a simple root, so that (Dlf)(x)
 $ 0), we get x' = - (Dof) (x) / (Dlf) (x). Thus the differential field structure on
 K that extends that on F is unique, if it exists. We now show that such a structure

 on K exists. Using the usual field-theoretic arguments, we may assume that K is a

 finite extension of F, so that we can write K = F(x), for a certain x E K. For some

 g(X) E F[X], to be determined later, let the map D: F[X] -+ F[X] be defined by

 DA = DoA + g(X)D1A,

 for any A e F[X]. It follows immediately that D(A + B) = DA + DB and D(AB)

 = (DA)B + A(DB) for all A, B E F[X], since the analogous identities hold for both

 Do and D1. Note that Da = a' for all a E F. Now look at the natural surjective ring

 homomorphism F[X] -+ F[x], which is the identity on F and sends X into x. Since
 F[x] = F(x) = K, the map D on F[X] will induce a derivation on K extending

 that on F if it so happens that D maps the kernel of our ring homomorphism into

 itself. But the kernel of the homomorphism is the ideal F[X]f(X), where f(X) is

 the minimal polynomial of x over F. Hence we shall have proved our result once we

 have shown that D maps F[X]f(X) into itself. The condition for this is simply that

 D map f(X) into a multiple of itself, that is that Df be any element of F[X] of

 which x is a root, or that (Df)(x) = 0. But this last condition reduces to (Dof)(x)
 + g(x) (D1f)(x) = 0. Since (Dlf)(x) $ 0 and F(x) = F[x], a polynomial g(X) E F[X]
 can actually be found such that (Df)(x) = 0, and this completes the proof of our

 statement.

 4. By a differential extension field of a differential field F we mean, of course,

 a differential field which is an extension field of F whose derivation extends the

 derivation on F. The following result will be the principal tool for proving the the-

 orem of the next section, and will be used for the verification of our subsequent

 examples.

 LEMMA. Let F be a differential field, F(t) a differential extension field of F having
 the same subfield of constants, with t transcendental over F, and with either t' E F

 or t'/t E F. If t' E F, then ftor any polynomial f(t) e F[t] of positive degree, (f(t))'

 is a polynomial in F[t] of the same degree as f(t), or degree one less, accrdding

 as the highest coefficient of f(t) is not, or is, a constant. If t'/t e F, then for any

 nonzero a E F and any nonzero integer n we have (atn)' = htn, for some nonzero
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 h E F, and furthermore, for any polynomial f(t) e F[t] of positive degree, (f(t))'
 is a polynomial in F[t] of the same degree, and is a multiple of f(t) only if f(t) is

 a monomial.

 We first consider the case t' = b E F. Let the degree of f(t) be n > 0, so that

 f(t) = antn + a, ltn-1 + * * * + a0, with ao, * * , a. E F, an 0 . Then

 (f(t))' = a,tn + (na,,b + an 1)tn- +

 This is clearly a polynomial in F[t], of degree n if an is not constant. If a,, is constant
 and nanb + a'- = 0, then (na,t + a =,1)' na b + a'-1 = 0, so that nant + a,_
 is a constant, therefore an element of F, so that t eF, contrary to the assumption

 that t is transcendental over F. Thus if a, is constant, (f(t))' has degree n - 1.
 Now suppose that we are in the case t'/t = b E F, Let a E F, a $ 0, and let n be

 a nonzero integer. Then

 (at")' - a'tn + natn-t, = (a' + nab)tn.

 If a' + nab = 0, then (at")' = 0, so that atn is constant, therefore an element of
 F, contradicting the transcendence of t over F. Therefore a' + nab $ 0. Finally,

 let f(t) E F[t] have positive degree. Clearly (f(t))' has the same degree. If (f(t))'

 is a multiple of f(t), it must be by a factor in F. Therefore if f(t) is not a monomial,

 a,,tn and a.,,tm being two of its different terms, and (f(t))' is a multiple of f(t), we have

 a' + na,b _ a + mamb
 a,, a,m

 so

 a I t' a,,, l
 n + n- - + nm-,
 a, t an t

 or (an t"/na,,tm)' = 0, so that a,,t'7an,,tmeF, again contradicting the transcendence of
 t over F. This completes the proof.

 5. Let F be a differential field. Define an elementary extension of F to be a

 differential extension field of F which is obtained by successive adjunctions of elements

 that are algebraic, or logarithms, or exponentials, that is, a differential extension

 field of the form F(t 1, .., tN), where for each i = 1, ..., N, the element ti is either
 algebraic over the field F(t1 ... ti-), or the logarithm or exponential of an element
 of F(t1,- ., t_1). Note that each intermediate field F(t1, .-,t _1) is a differential
 field and an elementary extension of F.

 The following result is the abstract generalization of Ostrowski's 1946 generaliza-

 tion of Liouville's 1835 theorem on the subject. A proof of the analytic case may be

 found in Ritt's classic exposition [4]. Other algebraic proofs, essentially the same as

 the one given here, may be seen in [2] and [5].
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 THEOREM. Let F be a diferential field of characteristic zero and a e F. If the
 equation y'= a has a solution in some elementary differential extension field of F

 having the same subfield of constants, then there are constants c1, C, c eF and

 elements u1, , un, v E F such that

 i=l lii

 A number of comments are in order before we proceed with the proof. First, in

 the case of greatest interest, in which our fields are fields of meromorphic functions

 on some subregion of lR or C, the condition that F and its elementary extension field

 have the same constants will be automatically satisfied as long as C c F, since any

 constant meromorphic function is a complex number. In the general case however,

 the condition that F and its elementary extension field have the same constants,

 or some related condition, is essential. This can be seen from the example F = R(x),

 the field of real rational functions of a real variable, with x' = 1 as usual, and

 c= -/(x2 + 1). Clearly f (1/(x2 + l))dx is an element of an elementary extension
 field of R(x), and our claim is that the assumption that we can write 1/(x2 + 1) in

 the desired form, with c1, C c-e l and u1, , u,, v elR(x), will lead to a contra-

 diction. For if x2 + 1 occurs vi times in the expression of ui as a power product of
 monic irreducible elements of RF[X], then u'/ui - 2vx/(x2 + 1) is an element of
 [R(x) without x2 + 1 in its denominator, while x2 + 1, if it occurs in the denominator
 of v, will occur at least twice in the denominator of v'. Thus x2 + 1 divides the de-

 nominator of neither v nor v', implying that 1 - I 2civix is divisible by x2 + 1, which
 is impossible. The final comment is that the theorem has an easy c onverse: if a can
 be written as indicated then a has an integral in some elementary extension field of F.

 This is quite easy to show in the abstract case and is immediate in the classical case

 where F is a field of meromorphic functions on a subregion of [R or C, as we see by

 passing to a suitable subregion, where the various logui's can be defined.
 Now for the proof of Liouville's theorem. By assumption there is a tower of

 differential fields

 F c F(t1) c ... c F(t 1, ,tN),

 all with the same subfield of constants, each ti being algebraic over F(t1, ... ti_ ),
 or the logarithm or exponential of an element of this field, such that there exists an

 element y E F(tj, ..., tN) such that y' = a. We shall prove the theorem by induction
 on N. The case N 0 is trivial, so assume that N > 0 and that the theorem holds for

 N - 1. Applying the case N - 1 to the fields F(t1) c F(t1, ..., tN), we deduce that we

 can write a in the desired form, but with uI, " un, v in F(t,). Setting tI = t, we have
 t algebraic over F, or the logarithm or exponential of an element of F, and we know

 that
 n U

 a - u ci-+ V S
 i=l Ui
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 with c1, , c,, constants of F and u1, ., u,,, v E F(t), and it remains to find a similar
 expression for cx, possibly with a different n, but with all of u1, **., u, v in F.

 First suppose that t is algebraic over F. Then there are polynomials U1, **, U,

 V E F[X] such that U1(t) = ul, , U,(t) = u,, V(t) = v. Let the distinct conjugates
 of t over F in some suitable algebraic closure of F(t) be z1 ( = t), T2, * Ts. (In case
 we are dealing with fields of meromorphic functions on a region in R or C, the

 functions T2, ..., zs can be taken to be meromorphic functions on a suitable sub-
 region, and it suffices to carry the proof through for functions on the subregion.)

 Now bear in mind the result of Section 3 on algebraic extensions of differential fields.

 We have

 E (Ui(rj))' + (V(r))

 for j = 1, , s, since this is true for j = 1. Application of the operation (1/s) ,

 to both sides of the equation yields

 ?1 Ci (Ui(TI) ... Ui(Tu))' j V(T1D+. + Y(T_
 i-1 S Ui(T 1) ..Ui(T ) (S)

 Since each Ui(T1) . Ui(Ts) and V(zT) + + V(T) are symmetric polynomials in
 Tl, -,T with coefficients in F, each of these expressions is actually in F. Hence the
 last equation is an expression for a of the desired form.

 In the remaining cases, where t is the logarithm or exponential of an element of F,

 we may assume that t is transcendental over F. Then we have

 " (UP())'
 ci= C-i() + (vt)),,
 i uj(t)

 with u1(t), ..., uJ(t), v(t) e F(t). Each ui(t) can be written as a power product of a
 nonzero element of F and various monic irreducible elements of F[t]. Hence we may,

 if necessary, use the logarithmic derivative identity to rewrite Zci(ui(t))'/ui(t) in a
 similar form, but with each ui(t) either in F or a monic irreducible element of F[t].

 We therefore assume that u1(t), ..., uJ(t) are distinct, each being an element of F or a
 monic irreducible element of F[t], and that no ci is zero. Now look at the partial
 fraction decomposition of v(t), which expresses v(t) as the sum of an element of

 F[t] plus various terms of the form g(t)/(f(t))T, where f(t) is a monic irreducible

 element of F[t], r a positive integer, and g(t) is a nonzero element of F[t] of degree

 less than that of f(t). Clearly u1(t), ..., u,(t), v(t) must be of very special form for the
 right hand side of the last equation to add up to a, which doesn't involve t. To in-

 vestigate this special form in detail, it now becomes convenient to separate cases.
 In each case the lemma provides the basic arguments.

 First, suppose that t is the logarithm of an element of F, so that t' = a'/a, for

 some a E F. Let f(t) be a monic irreducible element of F[t]. Then (f(t))' is also in

 F[t], and it has degree less than that of f(t), so that f(t) does not divide (f(t))'.
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 Thus if ui(t) = f(t), then the fraction (uj(t))'/uj(t) is already in lowest terms, with
 denominator f(t). If g(t)/(f(t))T occurs in the partial fraction expression for v(t),
 with g(t) E F[t] of degree less than that of f(t) and r > 0 and maximal for given f(t),

 then (v(t))' will consist of various terms having f(t) in the denominator at most r

 times plus (g(t)(1/(f(t))T)' = - rg(t)(f(t))'/(f (t))T+ 1. Since f(t) does not divide

 9(t)(f(t))', we see that a term with denominator (f(t))r+ 1 actually appears in
 (v(t))'. Thus if f(t) appears as a denominator in the partial fraction expansion of

 v(t), it will appear in a, which is impossible. Therefore, f(t) does not appear in the

 denominator of v(t). Therefore f(t) cannot be one of the ui(t)'s either. Since this is
 true for each monic irreducible f(t), we have each ui(t) e F and v(t) e F[t]. Since
 (v(t))' E F, the lemma implies that v(t) = ct + d, with c constant and d e F. Thus

 U f
 Oc=Eci ' + c- + d'
 i=l ui a

 is an expression for a of the desired form.

 Finally, consider the case where t is the exponential of an element of F, say

 t'/t = b', with b E F. The lemma implies that if f(t) is a monic irreducible element

 of F[t] other than t itself, then (f(t))' E F[t] and f(t) does not divide (f(t))'. Pre-
 cisely the same reasoning as above shows that f(t) cannot occur in the denominator

 of v(t), nor can any ui(t) equal f(t). Thus v(t) can be written as v(t) = 1ja,ti, where
 each aj E F and j ranges over a finite set of integers, positive, negative, or zero, and
 each of the quantities u1(t), ..., u.(t) is in F, with the possible exception that one of
 these may be t itself. Since each (uj(t))'/uj(t) is in F, we have (v(t))' E F, so the lemma
 implies that v(t) E F. If each ui(t) is in F, we already have a in the desired form, and
 are done. If not, only one ui(t), say u1(t), is not in F. Then u1(t) = t and u2(t),
 un(t) E F, so we can write

 a 1 C t + i-z ci Ui + VI -i- Ci U + (c,b + V)', i=2 Ui i=2 U

 with u2, * Un, c1b + v all in F. This completes the proof of the theorem.

 6. An elementary function is a meromorphic function on some region in R or C

 that is contained in an elementary extension field of the field of rational functions

 C(z). We now give some examples of elementary functions with nonelementary

 indefinite integrals.

 As a preliminary comment we note that if g(z) is a non-constant rational function

 of the complex variable z then eg is not algebraic over C(z). This can easily be shown

 analytically by noting that since g(z) must have at least one pole on the Riemann

 sphere, eg will have at least one essential singularity, unlike any algebraicfunction.

 Or it can be shown algebraically by looking at the irreducible equation over C(z)

 that eg would otherwise satisfy, say

 eng + ale(n-1)g + + an = 0,

This content downloaded from 
�������������129.67.246.57 on Wed, 30 Mar 2022 12:01:36 UTC������������� 

All use subject to https://about.jstor.org/terms



 1972] INTEGRATION IN FINITE TERMS 971

 where a,, * *, an E C(z), then differentiating this to get

 ng'eng + (a' + (n - 1)a1g')e(nl)g + . + an'= 0,

 which must be proportional to the first equation, so that ng' = an/an, then noting

 that an/an is either zero or a sum of fractions with constant numerators and linear
 denominators, whereas ng' can have no linear denominator, so that g' = 0, con-

 tradicting the assumption that g is nonconstant.

 We now want to derive a criterion, due to Liouville, that ff(z)eg(z)dz be ele-

 mentary, where f(z), g(z) are given rational functions of z, f(z) being nonzero, and

 g(z), as above, non-constant. Writing eg = t, we have t'/t = g'. Working in the

 differential field C(z, t), a pure transcendental extension of 0(z), we see that if

 f fegdz is elementary, then we can write

 ft = - ' + v,
 Ui1

 with c,, cn E C and u ,..,u1 v E C(z, t). Now let F = 0(z), so that f, g E F and

 u*.. u,'U,vcF(t). By factoring each ui as a power product of irreducible elements
 of F[t] and using logarithmic derivatives, if necessary, we can guarantee that the

 ui's which are not in F are distinct monic irreducible elements of F[t]. Imagine v
 expanded into partial fractions with respect to F[t]. The lemma implies immediately

 that the only possible monic irreducible factor of a denominator in v is t, which is

 also the only possible ui not in F. Thus v is of the form lb ti, for j ranging over
 some set of integers and each bj E F. Since Xciul/ui E F, we have f t = (b' + b1 g')t.
 Writing b, = a, we have f = a' + ag', with a E 0(z). Conversely, if there is an
 a E 0(z) such that f = a' + ag' then one elementary integral of f eg is aeg. Thus

 feg has an elementary integral if and only if there is an a E 0(z) such that f = a' + ag'.

 For given f, g E 0(z), the possibility of finding a E 0(z) such that f = a' + ag'

 can be decided by considering partial fraction expansions for f, g, and a. For fez dz
 we have the equation 1 = a' + 2za, which is easily seen to have no solution a E 0(z).

 For f (ez/z)dz, we have the equation l/z = a' + a, which also has no solution in
 0(z). Therefore feZ 2dz and f(ez/z)dz are not elementary. By certain changes of
 variable we can get other nonelementary integrals. For example, if we replace z by

 ez in the second integral we get f eezdz nonelementary, and replacing z by log z
 we get f (1/log z)dz nonelementary. The integral f log log zdz reduces to the
 previous integral by integration by parts, so it also is nonelementary.

 It is slightly more complicated to show that f (sin z/z)dz is not elementary.
 To do this, first change the variable to - I z to slightly simplify the problem to

 that of showing that f ((ez - e-z)/z)dz is not elementary. Here again consider the
 differential field ?(z, t), where t = ez. If our integral is elementary, Liouville's
 theorem enables us to write

 - E Ci
 tZ i = IUj
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 with c1, .Cn Ec C and u1 U, u", v E C(z, t). Again write F = C(z), so that u1, *-*, un,
 v E F(t), again arrange that the ui's which are not in F are distinct monic irreducible
 elements of F[t] and that v is expressed in its partial fraction form, and use the

 lemma. We again get that the only possible ui not in F is t, so that S cju!/u e F,
 and the only possible monic irreducible factor of a denominator in v is t. Writing

 v = bt, as before, with each bjeF, we deduce as before that l/z = b' + b1,
 which is impossible. Therefore S (sin z/z)dz is not elementary.

 7. The question arises whether for any explicitly given elementary function of

 the complex variable z it can be decided whether or not the function has an elementary

 integral, and if so, finding it. It is not difficult to see, using the method of the previous

 section, that this can be done for any function in ?(z, eg), where g is any nonconstant

 element of ?(z), but the general question is not so easy. Hardy's book [1] discusses

 the systematic integration of the kinds of elementary functions that occur in calculus,
 the main point being that there really is a system (contrary to the sometimes ex-

 pressed opinion that integration in calculus is as much an art as a science), but the
 book barely broaches the general decision question, which very quickly leads to
 once intractable questions about points of finite order on abelian varieties over
 finitely generated ground fields. A solution to this decision problem has recently
 been announced by Risch [3].
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